余弦定理教学设计

lijuanfhq 分享 时间: 收藏本文

【简介】感谢网友“lijuanfhq”参与投稿,以下是小编为大家准备的余弦定理教学设计(共16篇),欢迎大家前来参阅。

篇1:“余弦定理”教学设计

射阳县教育局教研室 王克亮

教学目标:(1)掌握余弦定理,并能解决一些简单的度量问题.

(2)初步运用余弦定理解决一些与测量和几何计算有关的实际问题. (3)经历余弦定理的发现与验证过程,增强学生的理性思维能力. 教学重点:余弦定理的发现与运用. 教学难点:余弦定理的证明.

课前准备:(1)自制一个如图所示的道具.

(2)课前,教者在黑板上画好如图所示的三个三角形.

固定联结点

A

塑料棒1

细绳

可动联结点

可转动点 塑料棒2

道具

b B B

B

A

教学过程:

一、情境创设 提出问题

[1]情境引入

师:首先请看两个实际问题:

情境1 A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条直的隧道的长度.另选一个点C,可以测得的数据有:AC?182m,BC?126m,?ACB?630,如何求A、B两地之间隧道的长度(精确到1m).

A

B

B D

C E

A

情境2 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)?

[2]提出问题

师:显然,这两个都是解三角形的问题.其中,情境1的实质是知道了三角形的两边与其夹角,求第三边的长度;而情境2的实质就是已知三角形的三条边,要求其一个内角的大小.

请问:(1)这两个问题能用正弦定理来解决吗? 生:不能.

(2)那么,这两个问题之间有联系吗? 生:互逆.

师:对,在解法上是互逆的,所以本节课我们将要探究的核心问题是:在已知三角形两条边的前提下,其夹角的大小与第三条边的长度之间有着怎样的关系?这正是余弦定理所揭示的规律----引入课题.

二、问题探究 知识建构

问题1 在?ABC中,已知CB?a,CA?b(其中a?b),当?C从小到大变化时,AB的长度的变化趋势如何?

师:(学生思考了一会儿后)我们可以用一个简单的实验看一下. (课上,利用课前制作道具做一下演示实验.) 生: AB的长度随着?C的增大而增大.

师:这是一个定性的结论.那么对于定量的研究,一个常用的思维策略是特殊化. 取C=90?是最容易想到的;另外,虽然角C不能取0?与180?,但它可以无限接近这两个角,所以不妨再考察一下这两种情形.

续问: 若将?C的范围扩大到[00,1800],特别地:当?C?00,?C?900,?C?1800这三种特殊情形时,AB的长度分别是多少?

生:当?C?00时,AB?a?b;当?C?900时

,AB?;当?C?1800

时,AB?a?b.

师:我们不妨把这三个结论在形式上写得更接近些,即

:

当?C?00时,AB?当?C?900时,AB?当?C?1800时,AB?B

A

问题2 请你根据上述三个特例的结果,试猜想:当?C??(00???1800)时,线段AB的长度是多少?

(在学生独立思考的基础上,小组讨论交流后请学生回答) 生

:AB?问题3 你能验证该猜想吗?请试一试.

(课上,利用课前画好的三张图进行讨论.先让学生独立思考一会儿,然后根据学生回答的情况进行讲解,至少讨论下列前两种方法.)

方法一:

证: (1)当?C??为锐角时,过点A作AD?BC于D.

则AB2?BD2?AD2?(a?bcos?)2?(bsin?)2=a2?b2?2abcos?.

D

B

A

(2)当?C??为直角时,结论显然成立.

(3)当?C??为钝角时, 过点A作AD?BC交BC的延长线于D. 则AB?BD?AD?(a?bcos(???))?(bsin(???))

?(a?bcos?)?(bsin?)=a?b?2abcos?.

D

2

2

2

2

2

2

2

A

b

22

C

a

B

综上所述,

均有AB?故猜想成立.

师:这种思路是构造直角三角形,利用勾股定理来计算AB的长,但要注意这里要分三种情况讨论.

方法二:

????????????????2????????2

证:因为AB?AC?CB,所以AB?(AC?CB)

????2????2????????

?AC?CB?2AC?CB?a2?b2?2abcos(???)?a2?b2?2abcos?,

B

A

即AB?故猜想成立.

师:这种方法的思路是构造向量,借助向量的运算来证题.将向量等式转化数量等式常用的手段是作数量积.

方法三:

证:以C为坐标原点,CB所在直线为x轴,建立平面直角坐标系.

????

则B(a,0),A(bcos?,bsin?),则BA?(bcos??a,bsin?),所以

????2

|AB|?(bcos??a)2?(bsin??0)2=a2?b2?2abcos?,

????

即AB?|AB|?故猜想成立.

师:这种思路是建立平面直角坐标系,借助于坐标运算来证题.利用坐标法的优点在于不必分类讨论了且运算简单.

当然,我们还可以从其它途径来验证这一猜想,这里就不再讨论了,有兴趣的同学课后我们可以作些交流.

问题4 在三角形中,如何用符号语言与文字语言表示出上述结论? (提示:根式的表示形式不如平方的形式来得美观.)

c2?a2?b2?2abcosC,

生:符号语言:在△ABC中,有a2?b2?c2?2bccosA,

b2?a2?c2?2accosB.

文字语言:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.

师:很好!这一结论我们称之为余弦定理,上述三个公式是余弦定理的一种表现形式. 问题5 如何根据三角形三条边的长度来求其内角的大小呢?

a2?b2?c2b2?c2?a2a2?c2?b2

生:将上述结论变形为: cosC?,cosA?,cosB?.

2ab2bc2ac

师:这是余弦定理的另一种表现形式.对于余弦定理的这两种形式,我们在解题中应该灵活地加以选用.

感悟:(1)在第一组式子中,当C=90°时,即有c2?a2?b2.所以,勾股定理是余弦定理 的特殊情形,余弦定理可以看做是勾股定理的推广.

(2)在第二组式子中,我们考察式子左右两边的符号,不难发现:

在△ABC中,C为锐角?a2?b2?c2;C为直角?a2?b2?c2;C为钝角?a2?b2?c2. 师:也就是说,在三角形中,要判断一个内角是什么角,只要看它的对边的平方与其它两边平方的和的.大小.

三、数学应用 深化理解

例1 在△ABC中,已知b=3,c=1,A=60°,求a.

解析:由余弦定理,得a2?b2?c2?2bccosA?32?12?2?3?1?cos600?7,

所以a?问:在此条件下,其它元素可求吗?

反思:(1)利用余弦定理,可以解决“已知两边和它们的夹角,求第三边和其他两个角”的问题.

(2)用余弦定理求边的长度时,切记最后的结果要开平方. 师: 情境1就是这种类型的问题,我们也不妨看一下解答.

情境1:A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条隧道的长度.另选一个点C,可以测得的数据有:AC=182m,BC=126m,∠ACB=63°,如何求A,B两地之间隧道的长度(精确到1m).

解析: 在?ABC中,因为AC?182m,BC?126m,?ACB?630,则由余弦定理,得

AB2?AC2?BC2?2AC?BCcos?ACB?1822?1262?2?182?126cos630 ?1822?1262?2?182?126?0.454?28177.15,

所以AB?168m.

答:A,B两地之间隧道的长度约为168m. 例2 在?ABC中,已知a=7,b=5,c=3,求A.

b2?c2?a252?32?721

解析:由余弦定理,得cosA????,

2bc2?5?32

所以A=120°.

问:在此条件下,其它两个角可求吗? 众生:可求.

反思: (1)利用余弦定理,可以解决“已知三边,求三个角”的问题. 师:情境2就是这种类型的问题,我们不妨看一下解答.

情境2: 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)?

解析:在?ABC中,因为c?4,b?5,a?6,则由余弦定理,得

b2?c2?a252?42?62

cosA???0.125,,所以A?82.80;

2bc2?5?4

A

E

答:弯折后,?BAC?82.80.

D

反思:(2)利用余弦定理解决实际问题,解题的关键是建立出相应的三角形的模型.同时,要注意最后结果的精确度的要求.

变式:(1)在△ABC中,已知a2+b2+ab=c2,求角C的大小.

a2?b2?c2?ab11222222

???,即cosC??, 解析:由a+b+ab=c,得a?b?c??ab,则

2ab2ab22

所以C?1200.

反思:(3)在解三角形时,由边的条件式求角时,别忘了余弦定理;同时要注重余弦定理的逆用.

变式:(2)若三条线段的长分别为5,6,7,则用这三条线段( ). A.能组成直角三角形 B.能组成锐角三角形

C.能组成钝角三角形 D.不能组成三角形

解析:首先因为两条小边之和大于第三边,所以能够组成三角形;接着,只要看最大的角是什么角.因为52?62?72,所以最大角为锐角,故这三条线段能组成锐角三角形.

思考:(1)若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围 是________.

(2)在?ABC中,已知a +c =2b,求证:B≤45°.

?x?6?x?6??

解析:(1)由?x?5?6或?5?x?6,

?x?11或1?x??x2?52?62?62?x2?52??

(2)要证: B≤60°,只要证:cosB?

1c?a?b1???22ca21

所以cosB?,故B≤60°.

2

2

2

2

1. 2

c2?a2?(

而cosB?

c?a2

)

13c2?3a2?6ca3(c?a)2??0, ?=

8ca8ca2ca2

四、思维提升 巩固拓展

[1]课堂小结

数学知识----本节课新学的数学知识只有余弦定理.余弦定理与正弦定理是三角形中的两朵奇葩,从形式上看,两者都具有“美观”的外形,余弦定理虽有多个表达式,但它们之间具有可以轮换的对称美;从本质上看,两者都揭示了三角形中边与角之间“美妙”的内在联系.

在解三角形的问题中,“已知三个元素”包括了“三条边,两角一边,两边一角”这三种情况,前面学习的正弦定理能够解决已知“两角与任一边” 以及“两边与其中一边的对角”这两类问题;今天学习的余弦定理又能够解决已知“三边” 以及“两边及其夹角”的这两类问题.这样,对于一般的解三角形问题,我们就都能找到解决的办法了.当然,对于一些较为复杂的三角形问题,往往还要把这两个定理联合起来解决问题.

思维启迪----从本节课的讨论与研究中,我们获得了以下的一些思维启迪:

(1)本节课上,对于余弦定理的发现,我们是从三个特例开始的,这遵循了“从特殊到一般”的思维策略.

(2)在三个特例的基础上,我们进行了大胆的猜想,所以合理运用数学猜想等合情推理手段,是我们进行数学发现的一个重要途径.

(3)另外,在验证余弦定理时,我们运用到了几何、三角、向量等多个知识领域,所以我们要注重不同知识内容之间的融会贯通.

[2]作业布置

必做作业:教材第16页习题1.2第1,2,3,4题. 选做作业:教材第16页习题1.2第12题.

课后探究: (1) 思考:若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围是________.

(2)在?ABC中,已知a +c =2b,求证:B≤45°.

篇2:关于余弦定理初中数学教学设计

教学设计

整体设计

教学分析

对余弦定理的探究,教材是从直角三角形入手,通过向量知识给予证明的.一是进一步加深学生对向量工具性的认识,二是感受向量法证明余弦定理的奇妙之处,感受向量法在解决问题中的威力.课后仍鼓励学生探究余弦定理的其他证明方法,推出余弦定理后,可让学生用自己的语言叙述出来,并让学生结合余弦函数的性质明确:如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广.还要启发引导学生注意余弦定理的几种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、化简的目的.

应用余弦定理及其另一种形式,并结合正弦定理,可以解决以下问题:(1)已知两边和它们的夹角解三角形;(2)已知三角形的三边解三角形.在已知两边及其夹角解三角形时,可以用余弦定理求出第三条边,这样就把问题转化成已知三边解三角形的问题.在已知三边和一个角的情况下,求另一个角既可以应用余弦定理的另一种形式,也可以用正弦定理.用余弦定理的另一种形式,可以(根据角的余弦值)直接判断角是锐角还是钝角,但计算比较复杂.用正弦定理计算相对比较简单,但仍要根据已知条件中边的大小来确定角的大小.

根据教材特点,本内容安排2课时.一节重在余弦定理的推导及简单应用,一节重在解三角形中两个定理的综合应用.

三维目标

1.通过对余弦定理的探究与证明,掌握余弦定理的另一种形式及其应用;了解余弦定理与勾股定理之间的联系;知道解三角形问 题的几种情形.

2.通过对三角形边角关系的探索,提高数学语言的表达能力,并进一步理解三角函数、余弦定理、向量的数量积等知识间的关系,加深对数学具有广泛应用的认识;同时通过正弦定理、余弦定理数学表达式的变换,认识数学中的对称美、简洁美、统一美.

3.加深对数学思想的认识,本节的主要数学思想是量化的数学思想、分类讨论思想以及数形结合思想;这些数学思想是对于数学知识的理性的、本质的、高度抽象的、概括的认识,具有普遍的指导意义,它是我们学习数学的重要组成部分,有利于加深学生对具体数学知识的理解和掌握.

重点难点

教学重点:掌握余弦定理;理解余弦定理的推导及其另一种形式,并能应用它们解三角形.

教学难点:余弦定理的证明及其基本应用以及结合正弦定理解三角形.

课时安排

2课时

教学过程

第1课时

导入新课

思路1.(类比导入)在探究正弦定理的证明过程中,从直角三角形的特殊情形入手,发现了正弦定理.现在我们仍然从直角三角形的这种特殊情形入手,然后将锐角三角形转化为直角三角形,再适当运用勾股定理进行探索,这种导入比较自然流畅,易于学生接受.

思路2.(问题导入)如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判断方法,这个三角形是大小、形状完全确定的三角形,能否把这个边角关系准确量化出来呢?也就是从已知的两边和它们的夹角能否计算出三角形的另一边和另两个角呢?根据我们掌握的数学方法,比如说向量法,坐标法,三角法,几何法等,类比正弦定理的证明,你能推导出余弦定理吗?

推进新课

新知探究

提出问题

??1?通过对任意三角形中大边对大角,小边对小角的边角量化,我们发现了正弦定理,解决了两类解三角形的问题.那么如果已知一个三角形的两条边及这两边所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.怎样已知三角形的两边及这两边夹角的条件下解三角形呢?

?2?能否用平面几何方法或向量方法或坐标方法等探究出计算第三边长的关系式或计算公式呢?

?3?余弦定理的内容是什么?你能用文字语言叙述它吗?余弦定理与以前学过的关于三角形的什么定理在形式上非常接近?

?4?余弦定理的另一种表达形式是什么?

?5?余弦定理可以解决哪些类型的解三角形问题?怎样求解?

?6?正弦定理与余弦定理在应用上有哪些联系和区别?

活动:根据学生的认知特点,结合课件“余弦定理猜想与验证”,教师引导学生仍从特殊情形入手,通过观察、猜想、证明而推广到一般.

如下图,在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面,我们根据初中所学的平面几何的有关知识来研究这一问题.

如下图,在△ABC中,设BC=a,AC=b,AB=c,试根据b、c、∠A来表示a.

教师引导学生进行探究.由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形.在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于点D,那么在Rt△BDC中,边a可利用勾股定理通过CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB,AD表示,进而在Rt△ADC内求解.探究过程如下:

过点C作CD⊥AB,垂足为点D,则在Rt△CDB中,根据勾股定理,得

a2=CD2+BD2.

∵在Rt△ADC中,CD2=b2-AD2,

又∵BD2=(c-AD)2=c2-2c?AD+AD2,

∴a2=b2-AD2+c2-2c?AD+AD2=b2+c2-2c?AD.

又∵在Rt△ADC中,AD=b?cosA,

∴a2=b2+c2-2bccosA.

类似地可以证明b2=c2+a2-2cacosB.

c2=a2+b2-2abcosC.

另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论.

这就是解三角形中的另一个重要定理——余弦定理.下面类比正弦定理的证明,用向量的方法探究余弦定理,进一步体会向量知识的工具性作用.

教师与学生一起探究余弦定理中的角是以余弦的形式出现的,又涉及边长问题,学生很容易想到向量的数量积的定义式:a?b=|a||b|cosθ,其中θ为a,b的夹角.

用向量法探究余弦定理的具体过程如下:

如下图,设CB→=a,CA→=b,AB→=c,那么c=a-b,

|c|2=c?c=(a-b)?(a-b)

=a?a+b?b-2a?b

=a2+b2-2abcosC.

所以c2=a2+b2-2abcosC.

同理可以证明a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB.

这个定理用坐标法证明也比较容易,为了拓展学生的思路,教师可引导学生用坐标法证明,过程如下:

如下图,以C为原点,边CB所在直线为x轴,建立平面直角坐标系,设点B的坐标为(a,0),点A的坐标为(bcosC,bsinC),根据两点间距离公式

AB=?bcosC-a?2+?bsinC-0?2,

∴c2=b2cos2C-2abcosC+a2+b2sin2C,

整理,得c2=a2+b2-2abcosC.

同理可以证明:a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB.

余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍,即

a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC

余弦定理指出了三角形的三条边与其中的一个角之间的关系,每一个等式中都包含四个不同的量,它们分别是三 角形的三边和一个角,知道其中的三个量,就可以求得第四个量.从而由三角形的三边可确定三角形的三个角,得到余弦定理的另一种形式:

cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab

教师引导学生进一步观察、分析余弦定理的结构特征,发现余弦定理与以前的关于三角形的勾股定理在形式上非常接近,让学生比较并讨论它们之间的关系.学生容易看出,若△ABC中,C=90°,则cosC=0,这时余弦定理变为c2=a2+b2.由此可知,余弦定理是勾股定理的推广;勾股定理是余弦定理的特例.另外,从余弦定理和余弦函 数的性质可知,在一个三角形中,如果两边的平方和 等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角;如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从以上可知,余弦定理可以看作是勾股定理的推广.

应用余弦定理,可以解决以下两类有关解三角形的问题:

①已知三角形的三边解三角形,这类问题是三边确定,故三角也确定,有解;

②已知两边和它们的夹角解三角形,这类问题是第三边确定,因而其他两个角也确定,故解.不会产生利用正弦定理解三角形所产生的判断解的取舍的问题.

把正弦定理和余弦定理结合起来应用,能很好地解决解三角形的问题.教师引导学生观察两个定理可解决的问题类型会发现:如果已知的是三角形的三边和一个角的情况,而求另两角中的某个角时,既可以用余弦定理也可以用正弦定理,那么这两种方法哪个会更好些呢?教师与学生一起探究得到:若用余弦定理的另一种形式,可以根据余弦值直接判断角是锐角还是钝角,但计算比较复杂.用正弦定理计算相对比较简单,但仍要根据已知条件中边的大小来确定角的大小,所以一般应该选择用正弦定理去计算比较小的边所对的角.教师要点拨学生注意总结这种优化解题的技巧.

讨论结果:

(1)、(2)、(3)、(6)见活动.

(4)余弦定理的另一种表达形式是:

cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab

(5)利用余弦定理可解决两类解三角形问题:

一类是已知三角形三边,另一类是已知三角形两边及其夹角.

应用示例

例1如图,在△ABC中,已知a=5,b=4,∠C=120°,求c.

活动:本例是利用余弦定理解决的第二类问题,可让学生独立完成.

解:由余弦定理,得

c2=a2+b2-2abcos120°,

因此c=52+42-2×5×4×?-12?=61.

例2如图,在△ABC中,已知a=3,b=2,c=19,求此三角形各个角的大小及其面积.(精确到0.1)

活动:本例中已知三角形三边,可利用余弦定理先求出边所对的角,然后利用正弦定理再求出另一角,进而求得第三角.教材中 这样安排是为了让学生充分熟悉正弦定理和余弦定理.实际教学时可让学生自己探求解题思路,比如学生可能会三次利用余弦定理分别求出三个角,或先求出最小边所对的角再用正弦定理求其他角,这些教师都要给予鼓励,然后让学生自己比较这些方法的不同或优劣,从而深刻理解两个定理的.

解:由余弦定理,得

cos∠BCA=a2+b2-c22ab=32+22-?19?22×3×2=9+4-1912=-12,

因此∠BCA=120°,

再由正弦定理,得

sinA=asin∠BCAc=3×3219=33219≈0.596 0,

因此∠A≈36.6°或∠A≈143.4°(不合题意,舍去).

因此∠B=180°-∠A-∠BCA≈23.4°.

设BC边上的高为AD,则

AD=csinB=19sin23.4°≈1.73.

所以△ABC的面积≈12×3×1.73≈2.6.

点评:在既可应用正弦定理又可应用余弦定理时,体会两种方法存在的差异.当所求的 角是钝角时,用余弦定理可以立即判定所求的角,但用正弦定理则不能直接判定.

变式训练

在△ABC中,已知a=14,b=20,c=12,求A、B和C.(精确到1°)

解:∵cosA=b2+c2-a22bc=202+122-1422×20×12=0.725 0,

∴A≈44°.

∵cosC=a2+b2-c22ab=142+202-1222×14×20=113140≈0.807 1,

∴C≈36°.

∴B=180°-(A+C)≈180°-(44°+36°)=100°.

例3如图,△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求∠A.(精确到0.1°)

活动:本例中三角形的三点是以坐标的形式给出的,点拨学生利用两点间距离公式先求出三边,然后利用余弦定理求出∠A.可由学生自己解决,教师给予适当的指导.

解:根据两点间距离公式,得

AB=[6-?-2?]2+?5-8?2=73,

BC=?-2-4?2+?8-1?2=85,

AC=?6-4?2+?5-1?2=25.

在△ABC中,由余弦定理,得

cosA=AB2+AC2-BC22AB?AC=2365≈0.104 7,

因此∠A≈84.0°.

点评:三角形三边的长作为中间过程,不必算出精确数值.

变式训练

用向量的数量积运算重做本例.

解:如例3题图,AB→=(-8,3),AC→=(-2,-4),

∴|AB→|=73,|AC→|=20.

∴cosA=AB→?AC→|AB→||AC→|

=-8×?-2?+3×?-4?73×20

=2365≈0.104 7.

因此∠A≈84.0°.

例4在△ABC中,已知a=8,b=7,B=60°,求c及S△ABC.

活动:根据已知条件可以先由正弦定理求出角A,再结合三角形内角和定理求出角C,再利用正弦定理求出边c,而三角形面积由公式S△ABC=12acsinB可以求出.若用余弦定理求c,可利用余弦定理b2=c2+a2-2cacosB建立关于c的方程,亦能达到求c的目的.

解法一:由正弦定理,得8sinA=7sin60°,

∴A1=81.8°,A2=98.2°.

∴C1=38.2°,C2=21.8°.

由7sin60°=csinC,得c1=3,c2=5,

∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.

解法二:由余弦定理,得b2=c2+a2-2cacosB,

∴72=c2+82-2×8×ccos60°.

整理,得c2-8c+15=0,

解之,得c1=3,c2=5.∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.

点评:在解法一的思路里,应注意用正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.

综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边及一角解三角形可用余弦定理解之.

变式训练

在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=60°.

(1)若△ABC的面积等于3,求a,b;

(2)若sinB=2sinA,求△ABC的面积.

解:(1)由余弦定理及已知条件,得a2+b2-2abcos60°=c2,即a2+b2-ab=4,

又因为△ABC的面积等于3,所以12absinC=3,ab=4.

联立方程组a2+b2-ab=4,ab=4,解得a=2,b=2.

(2)由正弦定理及已知条件,得b=2a,

联立方程组a2+b2-ab=4,b=2a,解得a=233,b=433.

所以△ABC的面积S=12absinC=233.

知能训练

1.在△ABC中,已知C=120°,两边a与b是方程x2-3x+2=0的两根,则c的值为…

( )

A.3 B.7 C.3 D.7

2.已知三角形的三边长分别为x2+x+1,x2-1,2x+1(x>1),求三角形的角.

答案:

1.D 解析:由题意,知a+b=3,ab=2.

在△ABC中,由余弦定理,知

c2=a2+b2-2abcosC=a2+b2+ab

=(a+b)2-ab

=7,

∴c=7.

2.解:比较得知,x2+x+1为三角形的边,设其对角为A.

由余弦定理,得

cosA=?x2-1?2+?2x+1?2-?x2+x+1?22?x2-1??2x+1?

=-12.

∵0

即三角形的角为120°.

课堂小结

1.教师先让学生回顾本节课的探究过程,然后再让学生用文字语言叙述余弦定理,准确理解其实质,并由学生回顾可用余弦定理解决哪些解三角形的问题.

2.教师指出:从方程的观点来分析,余弦定理的每一个等式都包含了四个不同的量,知道其中三个量,便可求得第四个量.要通过课下作业,从方程的角度进行各种变形,达到辨明余弦定理作用的目的.

3.思考本节学到的探究方法,定性发现→定量探讨→得到定理.

作业

课本习题1—1A组4、5、6;习题1—1B组1~5.

设计感想

本教案的设计充分体现了“民主教学思想”,教师不主观、不武断、不包办,让学生充分发现问题,合作探究,使学生真正成为学习的主体,力求在课堂上人人都会有“令你自己满意”的探究成果.这样能够不同程度地开发学生的潜能,且使教学内容得以巩固和延伸.“发现法”是常用的一种教学方法,本教案设计是从直角三角形出发,以归纳——猜想——证明——应用为线索,用恰当的问题通过启发和点拨,使学生把规律和方法在愉快的气氛中探究出来,而展现的过程合情合理,自然流畅,学生的主体地位得到了充分的发挥.

纵观本教案设计流程,引入自然,学生探究到位,体现新课程理念,能较好地完成三维目标,课程内容及重点难点也把握得恰到好处.环环相扣的设计流程会强烈地感染着学生积极主动地获取知识,使学生的探究欲望及精神状态始终处于状态.在整个教案设计中学生的思维活动量大,这是贯穿整个教案始终的一条主线,也应是实际课堂教学中的一条主线.

备课资料

一、与解三角形有关的几个问题

1.向量方法证明三角形中的射影定理

如图,在△ABC中,设三内角A、B、C的对边分别是a、b、c.

∵AC→+CB→=AB→,

∴AC→?(AC→+CB→)=AC→?AB→.

∴AC→?AC→+AC→?CB→=AC→?AB→.

∴|AC→|2+|AC→||CB→|cos(180°-C)=|AB→||AC→|cosA.

∴|AC→|-|CB→|cosC=|AB→|cosA.

∴b-acosC=ccosA,

即b=ccosA+acosC.

同理,得a=bcosC+ccosB,c=bcosA+acosB.

上述三式称为三角形中的射影定理.

2.解斜三角形题型分析

正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一个元素是边),那么这个三角形一定可解.

关于斜三角形的解法,根据所给的条件及适用的定理可以归纳为下面四种类型:

(1)已知两角及其中一个角的对边,如A、B、a,解△ABC.

解:①根据A+B+C=π,求出角C;

②根据asinA=bsinB及asinA=csinC,求b、c.

如果已知的是两角和它们的夹边,如A、B、c,那么先求出第三角C,然后按照②来求解.求解过程中尽可能应用已知元素.

(2)已知两边和它们的夹角,如a、b、C,解△ABC.

解:①根据c2=a2+b2-2abcosC,求出边c;

②根据cosA=b2+c2-a22bc,求出角A;

③由B=180°-A-C,求出角B.

求出第三边c后,往往为了计算上的方便,应用正弦定理求角,但为了避免讨论角是钝角还是锐角,应先求较小边所对的角(它一定是锐角),当然也可以用余弦定理求解.

(3)已知两边及其中一条边所对的角,如a、b、A,解△ABC.

解:①asinA=bsinB,经过讨论求出B;

②求出B后,由A+B+C=180°,求出角C;

③再根据asinA=csinC,求出边c.

(4)已知三边a、b、c,解△ABC.

解:一般应用余弦定理求出两角后,再由A+B+C=180°,求出第三个角.

另外,和第二种情形完全一样,当第一个角求出后,可以根据正弦定理求出第二个角,但仍然需注意要先求较小边所对的锐角.

(5)已知三角,解△ABC.

解:满足条件的三角形可以作出无穷多个,故此类问题解不.

3.“可解三角形”与“需解三角形”

解斜三角形是三角函数这章中的一个重要内容,也是求解立体几何和解析几何问题的一个重要工具.但在具体解题时,有些同学面对较为复杂(即图中三角形不止一个)的斜三角形问题,往往不知如何下手.至于何时用正弦定理或余弦定理也是心中无数,这既延长了思考时间,更影响了解题的速度和质量.但若明确了“可解三角形”和“需解三角形”这两个概念,则情形就不一样了.

所谓“可解三角形”,是指已经具有三个元素(至少有一边)的三角形;而“需解三角形”则是指需求边或角所在的三角形.当一个题目的图形中三角形个数不少于两个时,一般来说其中必有一个三角形是可解的,我们就可先求出这个“可解三角形”的某些边和角,从而使“需解三角形”可解.在确定了“可解三角形”和“需解三角形”后,就要正确地判断它们的类型,合理地选择正弦定理或余弦定理作为解题工具,求出需求元素,并确定解的情况.

“可解三角形”和“需解三角形”的引入,能缩短求解斜三角形问 题的思考时间.一题到手后,先做什么,再做什么,心里便有了底.分析问题的思路也从“试试看”“做做看”等不大确定的状态而变为“有的放矢”地去挖掘,去探究.

二、备用习题

1.△ABC中,已知b2-bc-2c2=0,a=6,cosA=78,则△ABC的面积S为( )

A.152 B.15 C.2 D.3

2.已知一个三角形的三边为a、b和a2+b2+ab,则这个三角形的角是( )

A.75° B.90° C.120° D.150°

3.已知锐角三角形的两边长为2和3,那么第三边长x的取值范围是( )

A.(1,5) B.(1,5) C.(5,5) D.(5,13)

4.如果把直角三角形的三边都增加同样的长度,则这个新三角形的形状为( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.由增加的长度确定

5.(1)在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=3,b=3,C=30°,则A=__________.

(2)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为__________.

6.在△ABC中,若(a+b+c)(a+b-c)=3ab,并且sinC=2sinBcosA,试判断△ABC的形状.

7.在△ABC中,设三角形面积为S,若S=a2-(b -c)2,求tanA2的值.

参考答案:

1.A 解析:由b2-bc-2c2=0,即(b+c)(b-2c)=0,得b=2c;①

由余弦定理,得a2=b2+c2-2bccosA,即6=b2+c2-74bc.②

解①②,得b=4,c=2.

由cosA=78,得sinA=158,

∴S△ABC=12bcsinA=12×4×2×158=152.

2.C 解析:设角为θ,由余弦定理,得a2+b2+ab=a2+b2-2abcosθ,

∴cosθ=-12.∴θ=120°.

3.D 解析:若x为边,由余弦定理,知4+9-x22×2×3>0,即x2<13,∴0

若x为最小边,则由余弦定理知4+x2-9>0,即x2>5,

∴x>5.综上,知x的取值范围是5

4.A 解析:设直角三角形的三边为a,b,c,其中c为斜边,增加长度为x.

则c+x为新三角形的最长边.设其所对的角为θ,由余弦定理知,

cosθ=?a+x?2+?b+x?2-?c+x?22?a+x??b+x?=2?a+b-c?x+x22?a+x??b+x?>0.

∴θ为锐角,即新三角形为锐角三角形.

5.(1)30° (2)612 解析:(1)∵a=3,b=3,C=30°,由余弦定理,有

c2=a2+b2-2abcosC=3+9-2×3×3×32=3,

∴a=c,则A=C=30°.

(2)∵bccosA+cacosB+abcosC=b2+c2-a22+c2+a2-b22+a2+b2-c22

=a2+b2+c22=32+42+622=612.

6.解:由正弦定理,得sinCsinB=cb,

由sinC=2sinBcosA,得cosA=sinC2sinB=c2b,

又根据余弦定理,得cosA=b2+c2-a22bc,

故c2b=b2+c2-a22bc,即c2=b2+c2-a2.

于是,得b2=a2,故b=a.

又因为(a +b+c)(a+b-c)=3ab,

故(a+b)2-c2=3ab.由a=b,得4b2-c2=3b2,

所以b2=c2,即b=c.故a=b=c.

因此△ABC为正三角形.

7.解:S=a2-(b-c)2,又S=12bcsinA,

∴12bcsinA=a2-(b-c)2,

有14sinA=-?b2+c2-a2?2bc+1,

即14?2sinA2?cosA2=1-cosA.

∴12?sinA2?cosA2=2sin2A2.

∵sinA2≠0,故12cosA2=2 sinA2,∴tanA2=14.

第2课时

导入新课

思路1.(复习导入)让学生回顾正弦定理、余弦定理的内容及表达式,回顾上两节课所解决的解三角形问题,那么把正弦定理、余弦定理放在一起并结合三角、向量、几何等知识我们会探究出什么样的解题规律呢?由此展开新课.

思路2.(问题导入)我们在应用正弦定理解三角形时,已知三角形的两边及其一边的对角往往得出不同情形的解,有时有一解,有时有两解,有时又无解,这究竟是怎么回事呢?本节课我们从一般情形入手,结合图形对这一问题进行进一步的探究,由此展开新课.

推进新课

新知探究

提出问题

?1?回忆正弦定理、余弦定理及其另一种形式的表达式,并用文字语言叙述其内容.能写出定理的哪些变式?

?2?正、余弦定理各适合解决哪类解三角形问题?

?3?解三角形常用的有关三角形的定理、性质还有哪些?

?4?为什么有时解三角形会出现矛盾,即无解呢?比如:,①已知在△ABC中,a=22 cm,b=25 cm,A=135°,解三角形;,②已知三条边分别是3 cm,4 cm,7 cm,解三角形.

活动:结合课件、幻灯片等,教师可把学生分成几组互相提问正弦定理、余弦定理的内容是什么?各式中有几个量?有什么作用?用方程的思想写出所有的变形(包括文字叙述),让学生回答正、余弦定理各适合解决的解三角形类型问题、三角形内角和定理、三角形面积定理等.可让学生填写下表中的相关内容:

解斜三角形时可

用的定理和公式 适用类型 备注

余弦定理

a2=b2+c2-2bccosA

b2=a2+c2-2accosB

c2=b2+a2-2bacosC (1)已知三边

(2)已知两边及其夹角

类型(1)(2)有解时只有一解

正弦定理

asinA=bsinB=csinC=2R

(3)已知两角和一边

(4)已知两边及其中一边的对角 类型(3)在有解时只有一解,类型(4)可有两解、一解或无解

三角形面积公式

S=12bcsinA

=12acsinB

=12absinC

(5)已知两边及其夹角

对于正弦定理,教师引导学生写出其变式:a=2RsinA,b=2RsinB,c=2RsinC,利用幻灯片更能直观地看出解三角形时的边角互化.对于余弦定理,教师要引导学生写出其变式(然后教师打出幻灯片):∠A>90°?a2>b2+c2;∠A=90°?a2=b2+c2;∠A<90°?a2

以上内容的复习回顾如不加以整理,学生将有杂乱无章、无规碰撞之感,觉得好像更难以把握了,要的就是这个效果,在看似学生乱提乱问乱说乱写的时候,教师适时地打出幻灯片(1张),立即收到耳目一新,主线立现、心中明朗的感觉,幻灯片除以上2张外,还有:

asinA=bsinB=csinC=2R;a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC;cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.

出示幻灯片后,必要时教师可根据学生的实际情况略作点评.

与学生一起讨论解三角形有时会出现无解的情况.如问题(4)中的①会出现如下解法:

根据正弦定理,sinB=bsinAa=25sin133°22≈0.831 1.

∵0°

于是C=180°-(A+B)≈180°-(133°+56.21°)=-9.21°或C=180°-(A+B)≈180°-(133°+123.79°)=-76.79°.

到这里我们发现解三角形竟然解出负角来,显然是错误的.问题出在哪里呢?在检验以上计算无误的前提下,教师引导学生分析已知条件.由a=22 cm,b=25 cm,这里a

讨论结果:

(1)、(3)、(4)略.

(2)利用正弦定理和余弦定理可解决以下四类解三角形问题:

①已知两角和任一边,求其他两边和一角.

②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).

③已知三边,求三个角.

④已知两边和夹角,求第三边和其他两角.

应用示例

例1在△ABC中,角A、B、C所对的边分别为a、b、c,b=acosC且△ABC的边长为12,最小角的正弦值为13.

(1)判断△ABC的形状;

(2)求△ABC的面积.

活动:教师与学生一起共同探究本例,通过本例带动正弦定理、余弦定理的知识串联,引导学生观察条件b=acosC,这是本例中的关键条件.很显然,如果利用正弦定理实现边角转化,则有2RsinB=2RsinA?cosC.若利用余弦定理实现边角转化,则有b=a?a2+b2-c22ab,两种转化策略都是我们常用的.引导学生注意对于涉及三角形的三角函数变换.内角和定理A+B+C=180°非常重要,常变的角有A2+B2=π2-C2,2A+2B+2C=2π,sinA=sin(B+C),cosA=-cos(B+C),sinA2=cosB+C2,cosA2=sinB+C2等,三个内角的大小范围都不能超出(0°,180°).

解:(1)方法一:∵b=acosC,

∴由正弦定理,得sinB=sinA?cosC.

又∵sinB=sin(A+C),∴sin(A+C)=sinA?cosC,

即cosA?sinC=0.

又∵A、C∈(0,π),∴cosA=0,即A=π2.

∴△ABC是A=90°的直角三角形.

方法二:∵b=acosC,

∴由余弦定理,得b=a?a2+b2-c22ab,

2b2=a2+b2-c2,即a2=b2+c2.

由勾股定理逆定理,知△ABC是A=90°的直角三角形.

(2)∵△ABC的边长为12,由(1)知斜边a=12.

又∵△ABC最小角的正弦值为13,

∴Rt△ABC的最短直角边长为12×13=4.

另一条直角边长为122-42=82,

∴S△ABC=12×4×82=162.

点评:以三角形为载体,以三角变换为核心,结合正弦定理和余弦定理综合考查逻辑分析和计算推理能力是高考命题的一个重要方向.因此要特别关注三角函数在解三角形中的灵活运用,及正、余弦定理的灵活运用.

变式训练

在△ABC中,角A、B、C所对的边分别是a、b、c,且cosA=45.

(1)求sin2B+C2+cos2A的值;

(2)若b=2,△ABC的面积S=3,求a.

解:(1)sin2B+C2+cos2A=1-cos?B+C?2+cos2A

=1+cosA2+2cos2A-1=5950.

(2)∵cosA=45,∴sinA=35.

由S△ABC=12bcsinA得3=12×2c×35,解得c=5.

由余弦定理a2=b2+c2-2bccosA,可得a2=4+25-2×2×5×45=13,

∴a=13.

例2已知a,b,c是△ABC中∠A,∠B,∠C的对边,若a=7,c=5,∠A=120°,求边长b及△ABC外接圆半径R.

活动:教师引导学生观察已知条件,有边有角,可由余弦定理先求出边b,然后利用正弦定理再求其他.点拨学生注意体会边角的互化,以及正弦定理和余弦定理各自的作用.

解:由余弦定理,知a2=b2+c2-2bccosA,即b2+52-2×5×bcos120°=49,

∴b2+5b-24=0.

解得b=3.(负值舍去).

由正弦定理:asinA=2R,即7sin120°=2R,解得R=733.

∴△ABC中,b=3,R=733.

点评:本题直接利用余弦定理,借助方程思想求解边b,让学生体会这种解题方法,并探究其他的解题思路.

变式训练

设△ABC的内角A,B,C的对边分别为a,b,c.已知b2+c2=a2+3bc,求:

(1)A的大小;

(2)2sinB?cosC-sin(B-C)的值.

解:(1)由余弦定理,得cosA=b2+c2-a22bc=3bc2bc=32,

∴∠A=30°.

(2)2sinBcosC-sin(B-C)

=2sinBcosC-(sinB?cosC-cosBsinC)

=sinBcosC+cosBsinC

=sin(B+C)

=sinA

=12.

例3如图,在四边形ABCD中,∠ADB=∠BCD=75°,∠ACB=∠BDC=45°,DC=3,求:

(1)AB的长;

(2)四边形ABCD的面积.

活动:本例是正弦定理、余弦定理的灵活应用,结合三角形面积求解,难度不大,可让学生自己独立解决,体会正、余弦定理结合三角形面积的综合应用.

解:(1)因为∠BCD=75°,∠ACB=45°,所以∠ACD=30°.

又因为∠BDC=45°,

所以∠DAC=180°-(75°+ 45°+ 30°)=30°.所以AD=DC=3.

在△BCD中,∠CBD=180°-(75°+ 45°)=60°,

所以BDsin75°=DCsin60°,BD =3sin75°sin60°=6+22.

在△ABD中,AB2=AD2+ BD2-2×AD×BD×cos75°=(3)2+(6+22)2-2×3×6+22×6-24= 5,所以AB=5.

(2)S△ABD=12×AD×BD×sin75°=12×3×6+22×6+24=3+234.

同理, S△BCD=3+34.

所以四边形ABCD的面积S=6+334.

点评:本例解答对运算能力提出了较高要求,教师应要求学生“列式工整、算法简洁、运算正确”,养成规范答题的良好习惯.

变式训练

如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.

(1)求cos∠CBE的值;

(2)求AE.

解:(1)因为∠BCD=90°+60°=150°,

CB=AC=CD,

所以∠CBE=15°.

所以cos∠CBE=cos(45°-30°)=6+24.

(2)在△ABE中,AB=2,

由正弦定理,得AEsin?45°-15°?=2sin?90°+15°?,

故AE=2sin30°cos15°=2×126+24=6-2.

例4在△ABC中,求证:a2sin2B+b2sin2A=2absinC.

活动:此题所证结论包含关于△ABC的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B=2sinBcosB等,以便在化为角的关系时进行三角函数式的恒等变形.

证法一: (化为三角函数)

a2sin2B+b2sin2A=(2RsinA)2?2sinB?cosB+(2RsinB)2?2sinA?cosA=8R2sinA?sinB(sinAcosB+cosAsinB)=8R2sinAsinBsinC=2?2RsinA?2RsinB?sinC=2absinC.

所以原式得证.

证法二: (化为边的等式)

左边=a2?2sinBcosB+b2?2sinAcosA=a2?2b2R?a2+c2-b22ac+b2?2a2R?b2+c2-a22bc=ab2Rc(a2+c2-b2+b2+c2-a2)=ab2Rc?2c2=2ab?c2R=2absinC.

点评:由边向角转化,通常利用正弦定理的变形式:a=2RsinA,b=2RsinB,c=2RsinC,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A=2sinA?cosA,正弦两角和公式sin(A+B)=sinA?cosB+cosA?sinB;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.

篇3:关于余弦定理初中数学教学设计

变 式训练

在△ABC中,求证:

(1)a2+b2c2=sin2A+sin2Bsin2C;

(2)a2+b2+c2=2(bccosA+cacosB+abcosC).

证明:(1)根据正弦定理,可设

asinA=bsinB= csinC= k,

显然 k≠0,所以

左边=a2+b2c2=k2sin2A+k2sin2Bk2sin2C=sin2A+sin2Bsin2C=右边.

(2)根据余弦定理,得

右边=2(bcb2+c2-a22bc+cac2+a2-b22ca+aba2+b2-c22ab)

=(b2+c2- a2)+(c2+a2-b2)+(a2+b2-c2)

=a2+b2+c2=左边.

知能训练

1.已知△ABC的三个内角A、B、C所对的三边分别为a、b、c.若△ABC的面积S=c2-(a-b)2,则tanC2等于( )

A.12 B.14 C.18 D.1

2.在△ABC中,角A、B、C的对边分别为a、b、c,且满足4sin2A+C2-cos2B=72.

(1)求角B的度数;

(2)若b=3,a+c=3,且a>c,求a、c的值.

答案:

1.B 解析:由余弦定理及面积公式,得

S=c2-a2-b2+2ab=-2abcosC+2ab=12absinC,

∴1-cosCsinC=14.

∴tanC2=1-cosCsinC=14.

2.解:(1)由题意,知4cos2B-4cosB+1=0,∴cosB=12.

∵0

(2)由余弦定理,知3=a2+c2-ac=(a+c)2-3ac=9-3ac,

∴ac=2.①

又∵a+c=3,②

解①②联立的方程组,得a=2,c=1或a=1,c=2.

∵a>c,∴a=2,c=1.

课堂小结

教师与学生一起回顾本节课我们共同探究的解三角形问题,特别是已知两边及其一边的对角时解的情况,通过例题及变式训练,掌握了三角形中边角互化的问题以及联系其他知识的小综合问题.学到了具体问题具体分析的良好思维习惯.

教师进一步点出,解三角形问题是确定线段 的长度和角度的大小,解三角形需要利用边角关系,三角形中,有六个元素:三条边、三个角;解三角形通常是给出三个独立的条件(元素),求出其他的元素,如果是特殊的三角形,如直角三角形,两个条件(元素)就够了.正弦定理与余弦定理是刻画三角形边角关系的重要定理,正弦定理适用于已知两角一边,求其他要素;余弦定理适用于已知两边和夹角,或者已知三边求其他要素.

作业

课本本节习题1—1B组6、7.

补充作业

1.在△ABC中,若tanAtanB=a2b2,试判断△ABC的形状.

2.在△ABC中,a、b、c分别是角A、B、C的对边,A=60°,B>C,b、c是方程x2-23x+m=0的两个实数根,△ABC的面积为32,求△ABC的三边长.

解答:1.由tanAtanB=a2b2,得sinA?cosBcosA?sinB=a2b2,

由正弦定理,得a=2RsinA,b=2RsinB,

∴sinA?cosBcosA?sinB=4R2sin2A4R2sin2B.

∴sinA?cosA=sinB?cosB,

即sin2A=sin2B.

∴A+B=90°或A=B,

即△ABC为等腰三角形或直角三角形.

2.由韦达定理,得bc=m,S△ABC=12bcsinA=12msin60°=34m=32,

∴m=2.

则原方程变为x2-23x+2=0,

解得两根为x=3±1.

又B>C,∴b>c.

故b=3+1,c=3-1.

由余弦定理a2=b2+c2-2bccosA=6,得a=6.

∴所求三角形的三边长分别为a=6,b=3+1,c=3-1.

设计感想

本教案设计的思路是:通过一些典型 的实例来拓展关于解三角形的各种题型及其解决方法,具体解三角形时,所选例题突出了函数与方程的思想,将正弦定理、余弦定理视作方程或方程组,处理已知量与未知量之间的关系.

本教案的设计注重了一题多解的训练,如例4给出了两种解法,目的是让学生对换个角度看问题有所感悟,使学生经常自觉地从一个思维过程转换到另一个思维过程,逐步培养出创新意识.换一个角度看问题,变通一下,也许会有意想不到的效果.

备课资料

一、正弦定理、余弦定理课外探究

1.正、余弦定理的边角互换功能

对于正、余弦定理,同学们已经开始熟悉,在解三角形的问题中常会用到它,其实,在涉及到三角形的其他问题中,也常会用到它们.两个定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决.

【例1】 已知a、b为△ABC的边,A、B分别是a、b的对角,且sinAsinB=32,求a+bb的值.

解:∵asinA=bsinB,∴sinAsinB=ab.又sinAsinB=32(这是角的关系),

∴ab=32(这是边的关系).于是,由合比定理,得a+bb=3+22=52.

【例2】 已知△ABC中,三边a、b、c所对的角分别是A、B、C,且2b=a+c.

求证:sinA+sinC=2sinB.

证明:∵a+c=2b(这是边的关系),①

又asinA=bsinB=csinC,∴a=bsinAsinB,②

c=bsinCsinB.③

将②③代入①,得bsinAsinB+bsinCsinB=2b.整理,得sinA+sinC=2sinB(这是角的关系).

2.正、余弦定理的巧用

某些三角习题的化简和求解,若能巧用正、余弦定理,则可避免许多繁杂的运算,从而使问题较轻松地获得解决,现举例说明如下:

【例3】 求sin220°+cos280°+3sin20°cos80°的值.

解:原式=sin220°+sin210°-2sin20°sin10°cos150°,

∵20°+10°+150°=180°,∴20°、10°、150°可看作一个三角形的三个内角.

设这三个内角所对的边依次是a、b、c,由余弦定理,得a2+b2-2abcos150°=c2.(_

而由正弦定理,知a=2Rsin20°,b=2Rsin10°,c=2Rsin150°,代入(_式,得sin220°+sin210°-2sin20°sin10°cos150°=sin2150°=14.∴原式=14.

二、备用习题

1.在△ABC中,已知a=11,b=20,A=130°,则此三角形( )

A.无解 B.只有一解

C.有两解 D.解的个数不确定

2.△ABC中,已知(a+c)(a-c)=b2+bc,则A等于( )

A.30° B.60° C.120° D.150°

3.△ABC中,若acosB=bcosA,则该三角形一定是( )

A.等腰三角形但不是直角三角形

B.直角三角形但不是等腰三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

4.△ABC中,tanA?tanB<1,则该三角形一定是( )

A.锐角三角形 B.钝角三角形

C.直角三角形 D.以上都有可能

5.在△ABC中,若∠B=30°,AB=23,AC=2,则△ABC的面积是__________.

6.在△ABC中,已知A=120°,b=3,c=5,求:

(1)sinBsinC;

(2)sinB+sinC.

7.在△ABC中,角A、B、C所对边的长分别是a、b、c,且cos〈AB→,AC→〉=14.

(1)求sin2B+C2+cos2A的值;

(2)若a=4,b+c=6,且b

参考答案:

1.A 解析:∵a90°,因此无解.

2.C 解析:由已知,得a2-c2=b2+bc,∴b2+c2-a2=-bc.

由余弦定理,得

cosA=b2+c2-a22bc=-bc2bc=-12.

∴A=120°.

3.D 解析:由已知条件结合正弦定理,得

sinAcosB=sinBcosA,即sinA?cosA=sinB?cosB,

∴sin2A=sin2B.

∴2A=2B或2A=180°-2B,

即A=B或A+B= 90°.

因此三角形为等腰三角形或直角三角形.

4.B 解析:由已知条件,得sinAcosA?sinBcosB<1,即cos?A+B?cosA?cosB>0,cosCcosAcosB<0.

说明cosA,cosB,cosC中有且只有一个为负.

因此三角形为钝角三角形.

5.23或3 解析:由ACsin30°=ABsinC,知sinC=32.

若∠C=60°,则△ABC是直角三角形,S△ABC=12AB×AC=23.

若∠C=120°,则∠A=30°,S△ABC=12AC×AB?sin30°=3.

6.解法一:(1)∵b=3,c=5,A=120°,

∴由余弦定理,得a2=b2+c2-2bccosA=9+25-2×3×5×(-12)=49.∴a=7.

由正弦定理,得sinB=bsinAa=3×327=3314,sinC=csinAa=5314,

∴sinBsinC=45196.

(2)由(1)知,sinB+sinC=8314=437.

解法二:(1)由余弦定理,得a=7,

由正弦定理a=2RsinA,得R=a2sinA=733,

∴sinB=b2R=32×733=3314,sinC=c2R=5314.

∴sinBsinC=45196.

(2)由(1)知,sinB+sinC=8314=437.

7.解:(1)sin2B+C2+cos2A=12[1-cos(B+C)]+(2cos2A-1)=12(1+cosA)+(2cos2A-1)=12(1+14)+(18-1)=-14.

(2)由余弦定理,得a2=b2+c2-2bccosA,

即a2=(b+c)2-2bc-2bccosA

篇4: 《正弦定理、余弦定理》教学设计

一、教学内容分析

本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学情分析

对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。

三、设计思想:

培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标:

1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.

2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。

3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。

五、教学重点与难点

教学重点:正弦定理的探索与证明;正弦定理的基本应用。

教学难点:正弦定理的探索与证明。

突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生

主体下给于适当的提示和指导。

六、复习引入:

1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?

2.在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?

结论:

证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

篇5: 《正弦定理、余弦定理》教学设计

一、教学内容:

本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。

二、教材分析:

1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。

三、教学目标:

1、知识目标:

把握正弦定理,理解证实过程。

2、能力目标:

(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。

(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。

(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:

篇6:高中数学必修五《正弦定理和余弦定理》教学设计

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

教学重难点

教学重点:熟练运用定理.

教学难点:应用正、余弦定理进行边角关系的相互转化.

教学过程

一、复习准备:

1. 写出正弦定理、余弦定理及推论等公式.

2. 讨论各公式所求解的三角形类型.

二、讲授新课:

1. 教学三角形的解的讨论:

① 出示例1:在△ABC中,已知下列条件,解三角形.

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况. (A为锐角时)

② 练习:在△ABC中,已知下列条件,判断三角形的解的情况.

2. 教学正弦定理与余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角.

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△ABC中,,试判断△ABC的形状.

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

三、巩固练习:

3. 作业:教材P11 B组1、2题.

篇7:高中数学必修五《正弦定理和余弦定理》教学设计

(一)教材分析

(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用

难点:利用向量知识证明定理

(二)教学目标

(1)知识目标:

①要学生掌握正余弦定理的推导过程和内容;

②能够运用正余弦定理解三角形;

③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的.学习数学的兴趣。

(三)教学过程

教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。

教学过程分如下几个环节:

教学过程课堂引入

1、定理推导

2、证明定理

3、总结定理

4、归纳小结

5、反馈练习

6、课堂总结、布置作业

具体教学过程如下:

(1)课堂引入:

正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?

(2)定理的推导。

首先提出问题:RtΔABC中可建立哪些边角关系?

目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:

①引导学生从SinA、SinB的表达式中发现联系。

②继续引导学生观察特点,有A边A角,B边B角;

③接着引导:能用C边C角表示吗?

④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?

发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

第二步证明定理:

①用向量方法证明定理:学生不易想到,设计如下:

问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破

实践:师生共同完成锐角三角形中定理证明

独立:学生独立完成在钝角三角形中的证明

总结定理:师生共同对定理进行总结,再认识。

在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。

在定理总结之后,教师布置思考题:定理还有没有其他证法?

通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。

(3)例题设置。

例1△ABC中,已知c=10,A=45°,C=30°,求b.

(学生口答、教师板书)

设计意图:①加深对定理的认识;②提高解决实际问题的能力

例2△ABC中,a=20,b=28,A=40°,求B和C.

例3 △ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解

例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。

可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。

设计意图:

①增强学生对定理灵活运用的能力

②提高分析问题解决问题的能力

③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。

(四)归纳小结。

借助多媒体动态演示:图表

使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。

这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。

(五)反馈练习:

练习①△ABC中,已知a=60,b=48,A=36°

②△ABC中,已知a=19,b=29,A=4°

③△ABC中,已知a=60,b=48,A=92°

判断解的情况。

通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。

(六)课堂总结,布置作业。

篇8:余弦定理教学教案

目标

1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

重点:余弦定理的发现和证明过程及其基本应用;

教学难点:勾股定理在余弦定理的发现和证明过程中的作用。

学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角

教学设想

[创设情景] C

如图1.1-4,在 ABC中,设BC=a,AC=b,AB=c,

已知a,b和 C,求边c b a

A c B

[探索研究] (图1.1-4)

联系已经学过的知识和方法,可用什么途径来解决这个问题?

用正弦定理试求,发现因A、B均未知,所以较难求边c。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A

如图1.1-5,设 , , ,那么 ,则

C B

(图1.1-5)

从而

同理可证

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即

思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:

[理解定理]从而知余弦定理及其推论的基本作用为:

①已知三角形的任意两边及它们的夹角就可以求出第三边;

②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?

(由学生总结)若 ABC中,C= ,则 ,这时

由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

例题:例1.在 ABC中,已知 , , ,求b及A

⑴解:∵

= cos

= = 8 ∴

求 可以利用余弦定理,也可以利用正弦定理:

⑵解法一:∵cos ∴

解法二:∵sin 又∵ >

< ∴ < , 即 < < ∴

评述:解法二应注意确定A的取值范围。

例2.在 ABC中,已知 , , ,解三角形

解:由余弦定理的推论得:

cos ;

cos ;

[随堂练习]第51页练习第1、2、3题。

[补充练习]在 ABC中,若 ,求角A(答案:A=120 )

[课堂小结](1)余弦定理是任何三角形边角之间存在的共同规律,

勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①.已知三边求三角;

②.已知两边及它们的夹角,求第三边。

(五):作业:第52页[习题2.1]A组第5题。

三角形中的几何计算

教学目标

1.知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

教学重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

教学难点:正、余弦定理与三角形的有关性质的综合运用。

学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。

教学设想:[创设情景]:思考:在 ABC中,已知 , , ,解三角形。从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。

[探索研究]:例1.在 ABC中,已知 ,讨论三角形解的情况

分析:先由 可进一步求出B;则 从而

1.当A为钝角或直角时,必须 才能有且只有一解;否则无解。

2.当A为锐角时,如果 ≥ ,那么只有一解;

如果 ,那么可以分下面三种情况来讨论:(1)若 ,则有两解;

(2)若 ,则只有一解; (3)若 ,则无解。

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且 时,有两解;其它情况时则只有一解或无解。

[随堂练习1]

(1)在 ABC中,已知 , , ,试判断此三角形的解的情况。

(2)在 ABC中,若 , , ,则符合题意的b的值有_____个。

(3)在 ABC中, , , ,如果利用正弦定理解三角形有两解,求x的取值范围。 (答案:(1)有两解;(2)0;(3) )

例2.在 ABC中,已知 , , ,判断 ABC的类型。

分析:由余弦定理可知

(注意: )

解: ,即 ,∴ 。

[随堂练习2]

(1)在 ABC中,已知 ,判断 ABC的类型。

(2)已知 ABC满足条件 ,判断 ABC的类型。

(答案:(1) ;(2) ABC是等腰或直角三角形)

例3.在 ABC中, , ,面积为 ,求 的值

分析:可利用三角形面积定理 以及正弦定理

解:由 得 ,

则 =3,即 ,从而

[随堂练习3]

(1)在 ABC中,若 , ,且此三角形的面积 ,求角C

(2)在 ABC中,其三边分别为a、b、c,三角形的面积 ,求角C

(答案:(1) 或 ;(2) )

[课堂小结](1)在已知三角形的两边及其中一边的对角解三角形时,

有两解或一解或无解等情形;

(2)三角形各种类型的判定方法;

(3)三角形面积定理的应用。

(五)课时作业:

(1)在 ABC中,已知 , , ,试判断此三角形的解的情况。

(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。

双曲线、抛物线的参数方程学案

第05时

2、2、2双曲线、抛物线的参数方程

学习目标

了解双曲线的参数方程的建立,熟悉抛物线参数方程的形式,会运用参数方程解决问题,进一步加深对参数方程的理解。

学习过程

一、学前准备

复习:复习抛物线的标准方程的四种形式,并填空:

(1) 表示顶点在 ,

焦点在 的抛物线;

(2) 表示顶点在 ,

焦点在 的抛物线。

二、新导学

探究新知(预习教材P12~P16,找出疑惑之处)

1、类比椭圆参数方程的建立,若给出一个三角公式 ,你能写出双曲线

的参数方程吗?

2、如图,设抛物线的普通方程为 , 为抛物线上除顶点外的任一点,以

射线 为终边的角记作 ,则 ,①

由 和①解出 得到:

(t为参数)

你能否根据本题的解题过程写出抛物线的四种不同形式方程对应的参数方程?并说出参数表示的意义。

应用示例

例1.如图, 是直角坐标原点,A ,B是抛物线 上异于顶点的两动点,且 ,求点A、B在什么位置时, 的面积最小?最小值是多少?

解:

反馈练习

1.求过P(0,1)到双曲线 的最小距离.

解:

三、总结提升

本节小结

1.本节学习了哪些内容?

答:1.了解双曲线的'参数方程的建立,熟悉抛物线参数方程的形式.

2.会运用参数方程解决问题,进一步加深对参数方程的理解。

学习评价

一、自我评价

你完成本节导学案的情况为( )

A.很好 B.较好 C. 一般 D.较差

后作业

1、已知抛物线 ,则它的焦点坐标为( )

A、B、

C、D、

2、对下列参数方程表示的图形说法正确的是( )

A、①是直线、②是椭圆

B、①是抛物线、②是椭圆或圆

C、①是抛物线的一部分、②是椭圆

D、①是抛物线的一部分、②是椭圆或圆

3.设P为等轴双曲线 上的一点, 为两个焦点,证明 .

4、经过抛物线 的顶点O任作两条互相垂直的线段OA和OB,以直线OA的斜率k为参数,求线段AB的中点的轨迹的参数方程。

高二数学2.4 二次分布学案

2.4 二项分布(二)

一、知识要点

1.独立重复试验

二、典型例题

例1.甲、乙两人进行五局三胜制的象棋比赛,若甲每盘的胜率为 ,乙每盘的胜率为 (和棋不算),求:

(1)比赛以甲比乙为3比0胜出的概率;

(2)比赛以甲比乙为3比2胜出的概率。

例2.某地区为下岗免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响。

(1)任选1名下岗人员,求该人参加过培训的概率;

(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列。

例3.A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 。

(1)求一个试验组为甲类组的概率;

(2)观察3个试验组,用X表示这3个试验组中甲类组的个数,求X的分布列。

三、巩固练习

1.某种小麦在田间出现自然变异植株的概率为0.0045,今调查该种小麦100株,试计算两株和两株以上变异植株的概率。

2.某批产品中有20%的不含格品,进行重复抽样检查,共取5个样品,其中不合格品数为X,试确定X的概率分布。

3.若一个人由于输血而引起不良反应的概率为0.001,求

(1)人中恰有2人引起不良反应的概率;

(2)2000人中多于1人引起不良反应的概率;

四、堂小结

五、后反思

六、后作业

1.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为(精确为0.0001)_________________。

2.一射击运动员射击时,击中10环的概率为0.7,击中9环的概率0.3,则该运动员射击3次所得环数之和不少于29环的概率为_______________。

3.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14。

其中正确结论的序号是_______________。(写出所有正确结论的序号)

4.某产品10,其中3次品,现依次从中随机抽取3(不放回),则3中恰有2次品的概率为_____________。

5.某射手每次射击击中目标的概率都是0.8,现在连续射击4次,求击中目标的次数X的概率分布。

6.某安全生产监督部门对6家小型煤矿进行安全检查(简称安检),若安检不合格,则必须进行整改,若整改后经复查仍不合格,则强行关闭,设每家煤矿安检是否合格是相互独立的,每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:

(1)恰好有三家煤矿必须整改的概率;

(2)至少关闭一家煤矿的概率。(结果精确到0.01)

7.9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。

(1)求甲坑不需要补种的概率;

(2)求3个坑中需要补种的坑数X的分布列;

(3)求有坑需要补种的概率。(精确到0.001)

解三角形

一、目标

1、知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

2、过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

3、情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

二、重点:推导三角形的面积公式并解决简单的相关题目。

教学难点:利用正弦定理、余弦定理来求证简单的证明题。

三、教学方法:探析归纳,讲练结合

四、教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为h 、h 、h ,那么它们如何用已知边和角表示?

生:h =bsinC=csinB,h =csinA=asinC,h =asinB=bsinaA

师:根据以前学过的三角形面积公式S= ah,应用以上求出的高的公式如h =bsinC代入,可以推导出下面的三角形面积公式,S= absinC,大家能推出其它的几个公式吗?

生:同理可得,S= bcsinA, S= acsinB

师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解

Ⅱ.探析新课

[范例讲解]

例1、在 ABC中,根据下列条件,求三角形的面积S(精确到0.1cm )(1)已知a=14.8cm,c=23.5cm,B=148.5 ;(2)已知B=62.7 ,C=65.8 ,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:(1)应用S= acsinB,得 S= 14.8 23.5 sin148.5 ≈90.9(cm )

(2)根据正弦定理, = ,c = ,S = bcsinA = b

A = 180 -(B + C)= 180 -(62.7 + 65.8 )=51.5

S = 3.16 ≈4.0(cm )

(3)根据余弦定理的推论,得cosB = = ≈0.7697

sinB = ≈ ≈0.6384应用S= acsinB,得

S ≈ 41.4 38.7 0.6384≈511.4(cm )

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm )?

师:你能把这一实际问题化归为一道数学题目吗?

生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

由学生解答,老师巡视并对学生解答进行讲评小结。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,cosB= = ≈0.7532,sinB= 0.6578应用S= acsinB S ≈ 68 127 0.6578≈2840.38(m )

答:这个区域的面积是2840.38m 。

例3、在 ABC中,求证:(1) (2) + + =2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明

证明:(1)根据正弦定理,可设 = = = k,显然 k 0,所以

左边= = =右边

(2)根据余弦定理的推论,

右边=2(bc +ca +ab )

=(b +c - a )+(c +a -b )+(a +b -c )=a +b +c =左边

变式练习1:已知在 ABC中, B=30 ,b=6,c=6 ,求a及 ABC的面积S

提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。

答案:a=6,S=9 ;a=12,S=18

Ⅲ.课堂练习:课本练习第1、2题

Ⅳ.课时小结:利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。

Ⅴ.课后作业:课本习题2-3 A组第12、14、15题

等比数列的概念及通项

M

课时20 等比数列的概念及通项

目标:1.掌握等比数列的概念。

2.能根据等比数列的通项公式,进行简单的应用。

过程:

1.观察以下数列:

1,2,4,8,16,……

3,3,3,3,……

2.相比与等差数列,以上数列有什么特点?

等比数列的定义:

定义的符号表示 ,注意点:① ,② 。

3.判断下列数列是否为等比数列,若是,请指出公比 的值。

(1)

(2)

(3)

(4)

4.求出下列等比数列的未知项。

(1) ; (2) 。

5.已知 是公比为 的等比数列,新数列 也是等比数列吗?如果是,公比是多少?

6.已知无穷等比数列 的首项为 ,公比为 。

(1)依次取出数列 中的所有奇数项,组成一个新数列,这个数列还是等比数列吗?如果是,它的首项和公比是多少?

(2)数列 (其中常数 )是等比数列吗?如果是,它的首项和公比是多少?

二、通项公式

1.推导通项公式

例1.在等比数列 中,

(1)已知 ,求 ; (2)已知 ,求 。

例2.在243和3中间插入3个数,使这5个数成等比数列,求这三个数。

例3.已知等比数列 的通项公式为 ,(1)求首项 和公比 ;

(2)问表示这个数列的点 在什么函数的图像上?

例4.类比等差数列填空:

等差数列等比数列

通项

定义从第二项起,每一项与它的前一项的差都是同一个常数。

首项,公差(比)

取值有无限制没有任何限制

相应图像的特点直线 上孤立的点

课后作业:

1. 成等比数列,则 = 。

2.在等比数列 中,

(1)已知 ,则 = , = 。

(2)已知 ,则 = 。

(3)已知 ,则 = 。

3.设 是等比数列,判断下列命题是否正确?

(1) 是等比数列 ( ); (2) 是等比数列 ( )

(3) 是等比数列 ( ); (4) 是等比数列 ( )

(5) 是等比数列 ( ); (6) 是等比数列 ( )

4.设 成等比数列,公比 =2,则 = 。

5.在G.P 中,(1)已知 ,求 ;(2)已知 ,求 。

6.在两个同号的非零实数 和 之间插入2个数,使它们成等比数列,试用 表示这个等比数列的公比。

7.已知公差不为0的等差数列的第2,3,6项,依次构成一个等比数列,求该等比数列的通项。

8.已知 五个数构成等比数列,求 的值。

9.在等比数列 中, ,求 。

10.三个正数成等差数列,它们的和为15,如果它们分别加上1,3,9就成等比数列,求这三个数。

11.已知等比数列 ,若 ,求公比 。

12.已知 ,点 在函数 的图像上,( ),设 ,求证: 是等比数列。

问题统计与分析

平面向量的坐标表示

总 题向量的坐标表示总时第23时

分 题平面向量的坐标运算分时第2时

目标掌握平面向量的坐标表示及坐标运算

重点难点掌握平面向量的坐标表示及坐标运算;平面向量坐标表示的理解

引入新

1、在直角坐标平面内一点 是如何表示的? 。

2、以原点 为起点, 为终点,能不能也用坐标表示 呢?例:

3、平面向量的坐标表示。

4、平面向量的坐标运算。

已知 、、实数 ,那么

例题剖析

例1、如图,已知 是坐标原点,点 在第一象限, , ,求向量 的坐标。

例2、如图,已知 , , , ,求向量 , , , 的坐标。

例3、用向量的坐标运算解:如图,质量为 的物体静止的放在斜面上,斜面与水平面的夹角为 ,求斜面对物体的摩擦力 。

例4、已知 , , 是直线 上一点,且 ,求点 的坐标。

巩固练习

1、与向量平行的单位向量为( )

、、、或 、

2、已知 是坐标原点,点 在第二象限, , ,求向量 的坐标。

3、已知四边形 的顶点分别为 , , , ,求向量 , 的坐标,并证明四边形 是平行四边形。

4、已知作用在原点的三个力 , , ,求它们的合力的坐标。

5、已知 是坐标原点, , ,且 ,求 的坐标。

堂小结

平面向量的坐标表示;平面向量的坐标运算。

后训练

班级:高一( )班 姓名__________

一、基础题

1、若向量 , ,则 , 的坐标分别为( )

2、已知 ,终点坐标是 ,则起点坐标是 。

3、已知 , ,向量 与 相等.则 。

4、已知点 , , ,则 。

5、已知 的终点在以 , 为端点的线段上,则 的最大值和最小值分别等于 。

6、已知平行四边形 的三个顶点坐标分别为 , , ,求第四个顶点 的坐标。

7、已知向量 , ,点 为坐标原点,若向量 , ,求向量 的坐标。

8、已知点 , 及 , ,求点 , 和 的坐标。

三、能力题

9、已知点 , , ,若点 满足 ,

当 为何值时:(1)点 在直线 上? (2)点 在第四象限内?

基本不等式

第04讲: 基本不等式

高考《考试大纲》的要求:

① 了解基本不等式的证明过程

② 会用基本不等式解决简单的最大(小)值问题

(一)基础知识回顾:

1.定理1. 如果a,b ,那么 ,(当且仅当_______时,等号成立).

2.定理2(基本不等式):如果a,b>0,那么______________(当且仅当_______时,等号成立).

称_______为a,b的算术平均数,_____为a,b的几何平均数。基本不等式又称为________.

3. 基本不等式的几何意义是:_________不小于_________. 如图

4.利用基本不等式求最大(小)值时,要注意的问题:(一“正”;二“定”;三“相等”)

即: (1)和、积中的每一个数都必须是正数;

(2)求积的最大值时,应看和是否为定值;求和的最小值时,应看积是否为定值,;

简记为:和定积最_____,积定和最______.

(3)只有等号能够成立时,才有最值。

(二)例题分析:

例1.(陕西)设x、y为正数,则有(x+y)(1x+4y)的最小值为( )

A.15 B.12C.9 D.6

例2.函数 的值域是_________________________.

例3(江西、陕西、天津,全国、理) 设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为 ,画面的上、下各有8cm空白,左、右各有5cm空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张的面积最小?

(三)基础训练:

1.设 且 则必有( )

(A) (B)

(C) (D)

2.(湖南理)设a>0, b>0,则以下不等式中不恒成立的是( )

(A) ≥4 (B) ≥

(C) ≥ (D) ≥

3.(2001春招北京、内蒙、安徽、理)若 为实数,且 ,则 的最小值是( )

(A)18 (B)6(C) (D)

4. 已知a,b ,下列不等式中不正确的是( )

(A) (B)

(C) (D)

5.(福建)下列结论正确的是( )

A.当 B.

C. 的最小值为2D.当 无最大值

6. 已知两个正实数 满足关系式 , 则 的最大值是_____________.

7.若 且 则 中最小的一个是__________.

8.(2005北京春招、理)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量 (千辆/小时)与汽车的平均速度 (千米/小时)之间的函数关系为: 。

(1)在该时段内,当汽车的平均速度 为多少时,车流量最大?最大车流量为多少?(精确到 千辆/小时)

(2)若要求在该时段内车流量超过10千辆/小时,则汽车站的平均速度应在什么范围内?

(四)拓展训练:

1.(2000全国、江西、天津、广东)若 ,P= ,Q= ,R= ,则( )

(A)R

2.若正数a、b满足ab=a+b+3,分别求ab与a+b的取值范围。

参考答案

第04讲: 基本不等式

(二)例题分析: 例1. C; 例2. ;

例3解:设画面高为x cm,宽为λx cm,则λ x2 = 4840.

设纸张面积为S,有S = (x+16) (λ x+10)= λ x2+(16λ+10) x+160,

将 代入上式,得 .

当 时,即 时,S取得最小值.

此时,高: ,宽: .

答:画面高为88cm,宽为55cm时,能使所用纸张面积最小.

(三)基础训练: 1. B; 2. B; 3. B; 4. B 5.B; 6. 2 ; 7.

8. 解:(Ⅰ)依题意,

(Ⅱ)由条得

整理得v2-89v+1600<0, 即(v-25)(v-64)<0, 解得25

答:当v=40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时.

(四)拓展训练:1. B;

2.解:因为a、b是正数,所以 ,即 ,

法一:令 ,则 ,由ab=a+b+3≥2 +3,得 ,(t>0)

解得t≥3, 即 ,所以ab≥9,a+b=ab-3≥6.

法二:令 ,则由ab=a+b+3可知a+b+3 = ,得 ,(x>0)

整理得 ,又x>0,解得x≥6,即a+b≥6,所以ab=a+b+3≥9.

答: ab与a+b的取值范围分别是 与 。

篇9:《余弦定理》教学反思

本节课的教学是在学生学习了三角函数、平面向量、正弦定理等基础上而设置的教学内容,从解三角形的实际应用问题出发,提出问题,引发学生思考,激发学生的求知欲,调动学生的积极性,在对旧知识应用中提炼出新知识,从而新旧知识融为一体,使学生建立完整的知识系统.

教学中,引导学生从已学知识进行多角度分析问题,从而培养了学生思考问题的灵活性,在得到定理猜想后,找出证明定理的办法,揭示了蕴含在处理问题中的数学思想方法,不仅知其然,而且知其所以然.在引导学生推导出公式《余弦定理》,培养学生善于观察,归纳,发现特点,总结规律的好习惯.通过和勾股定理的比较,得出勾股定理是余弦定理的特殊情况,使学生加深了对余弦定理的理解,思维问题更加深入,提高了思维能力.

常言说:要学以致用。余弦定理的应用是本节教学的重要一环.所以,例题的选择和讲解是学习本节课的重要一环.例1、例2是余弦定理的简单应用,目的在于巩固余弦定理知识,加深对定理的理解;练习是余弦定理的变形应用,通过本题的训练,使学生更灵活地应用余弦定理,使定理的应用提高到了新的高度;通过解题比较,加深了对正、余弦定理的理解,体现了两者的联系,训练了学生从多角度、多方面思考问题的习惯.

本节课的教学设计是在吸取传统教学模式下的优点,结合新课改的要求进行改进设计的,以引导为主,重在发展学生的数学思维能力,培养其提出问题、解决问题的能力.

1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.

2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理.

3、本节课的重点首先是定理的发现和证明,教学中,我采取“情境―问题”教学模式,沿着“设置情境―提出问题―解决问题―总结规律―――应用规律”这条主线,从情境中提出数学问题,以“问题”为主线组织教学,形成以提出问题与解决问题携手并进的“情境―问题”学习链,目的使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成

篇10: 《余弦定理》教学反思

本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,提出解题需要,引发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从向量知识、坐标法、平面几何等方面进行分析讨论。在给出余弦定理的三个等式和三个推论之后,又对知识进行了归纳比较,发现特征,便于学生识记,同时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思维层次。

命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。所以,例题的精选、讲解是至关重要的。设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固余弦定理知识。例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。

本课的教学应具有承上启下的目的。因此在教学设计时既兼顾前后知识的联系,又使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

本课学生动手较多,会有很多新问题产生,因此显得课堂时间不足。今后教学要在这方面注意把握。

篇11: 《余弦定理》教学反思

“正弦定理和余弦定理”是高中数学必修5中“解三角形”的一节内容。本节在有关三角形、三角函数和解直角三角形知识的基础上,通过对任意三角形边角关系的研究,发现并掌握三角形中边角之间的数量关系。本节教学内容与前后知识联系紧密,涉及多种数学思想方法,现反思如下。

一、解三角形与判定三角形全等之间的关系

解三角形讨论的是三角形中的各种几何量之间的关系,如边、角、面积、外接圆半径和内切圆半径等之间的.关系,而正弦定理和余弦定理是解三角形的主要工具。平面几何主要是从定性的角度研究三角形,解三角形主要是从定量的角度研究三角形中的各种几何量之间的关系,是用解析的方法研究三角形。两种研究角度不同,可以互补,相得益彰。

判定三角形全等的公理有:边角边公理(SAS)、边边边公理(SSS)、角边角公理(ASA)和角角边公理(AAS)。其中至少有一个元素是边,仅有三个角(AAA)对应相等的两个三角形相似但不全等。判定三角形全等条件的几何意义是三角形的其它变量可以用所给的一组变量表达。如,SSS公理判定三角形全等的几何意义是:△ABC三边的长可以唯一地确定它的三个内角,如已知△ABC的三边,可用余弦定理的推论,求得三角。SAS公理判定三角形全等的几何意义是:△ABC的两条边的长及其夹角唯一地确定了第三边的长,进而唯一地确定了它的其余两条边长。如已知△ABC的两边及其夹角C,可以用余弦定理求出第三边。这时,三边已知,可用余弦定理的推论求出其余两角。这正是余弦定理可以解决的两类问题:已知三边,求三角(SSS);已知两边及其夹角,求第三边和其余两角(SAS)。

角边角(ASA)公理和角角边公理(AAS)借助三角形内角和定理,可以认为是实质相同的,其几何意义是△ABC的两角和任一边可以唯一确定其余的角和边,如已知△ABC的两角A,B和夹边c,可以求出这是正弦定理所能解决的一类问题:已知两角和任一边,求其余的边和角(ASA,AAS)。正弦定理还能解决一类问题:已知两边和其中一边的对角,求第三边和其余两角(SSA)。从几何意义上讲,SSA不能判定三角形全等,也就不能唯一确定一个三角形,表现在用正弦定理解三角形时会出现两解、一解和无解的情况。

从正弦定理和余弦定理的角度看,判定三角形全等的边角边公理(SAS)、边边边公理(SSS)、角边角公理(ASA)和角角边公理(AAS)是相互等价的。

由上可见,研读教材时,要从整体和全局的高度把握教材,了解教材的结构、地位作用和相互联系,使之相互诠释补充,产生新的见解。教学中,剖析透彻三角形全等的判定公理与解三角形之间的关系,可以完善学生的认知结构,将初中知识升华。

二、数学思想方法

数学思想方法的教学是数学教学中的重要组成部分,有利于加深学生对数学知识的理解和掌握,提高学生解决数学问题的能力。本节的两个主要结论是正弦定理和余弦定理,教学中应重视与内容密切相关的数学思想方法的教学,在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。

在正弦定理部分,考虑到不容易直接得出一般三角形中边和角的关系,可以先引导学生在直角三角形中,考虑与边角有关的三角函数知识来发现这一规律,接着猜想这一规律的一般性,然后在锐角三角形和钝角三角形中进行证明,从而得出正弦定理,这一过程体现了由特殊到一般和分类讨论的数学思想。在锐角三角形和钝角三角形中证明结论时,也是通过作高将其转化为直角三角形进行证明,体现了转化与化归的数学思想。

在余弦定理部分,得出余弦定理后,分析余弦定理的形式并提出已知三边求角的问题,结合方程的思想得出余弦定理的推论,从数量化的角度刻画了判定三角形全等的“边、边、边”结论。在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中。提出了一个思考问题:“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系。如何看这两个定理之间的关系?”进而结合余弦函数的性质分析得出:余弦定理是勾股定理的推广,把勾股定理纳入到余弦定理的知识系统中,体现了从一般到特殊的思想。

正弦定理和余弦定理的应用,都通过两种不同类型的例题介绍。正弦定理主要介绍“角角边”和“边边角”两种类型,余弦定理主要介绍“边角边”和“边边边”两种类型,体现了分类讨论的思想。

三、数学知识之间的联系

正弦定理和余弦定理的证明和应用中涉及诸多数学知识,如向量、三角函数、解析几何等,教学时应予以注意。

正弦定理和余弦定理刻画了三角形中边角的数量化关系,与初中学过的三角形中边角的基本关系和判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢?”在引入余弦定理内容时,从初中所学的三角形全等出发,定性说明已知三角形两边及夹角则该三角形完全确定,从而提出问题:已知三角形两边及夹角能否定量计算第三边呢?最后,正弦定理和余弦定理落脚于解三角形,使初中学习的判定三角形全等的公理得到了理性化的解释。是定性到定量的升华,也可以说二者在这里找到了共鸣,融为一体。这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《义务教育数学课程标准》把“正弦定理和余弦定理”这部分内容安排在必修5,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、解析几何等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,例如正弦定理的证明,教材采用的是借助直角三角形中边角的三角函数关系,事实上,还可以借助三角形外接圆和向量进行证明。余弦定理的证明,除了教材中采用的向量法,还可以运用坐标法,借助两点间距离公式和三角知识证明。教学中,注意多种证明方法的运用,既可以巩固各部分知识,体会数学知识之间的内在联系,体现数学知识的作用和威力,如向量、三角函数,又可通过多种方法的比较,开阔思路,汲取精华,提炼最优解题方法。

因此,进行正弦定理和余弦定理教学时,要注意与前后各章内容的联系,注意复习和应用已学内容,并为后续章节内容做好准备。这样,能使整套教科书成为―个有机整体,提高教学效果,并有利于学生对数学知识的学习和巩固。

篇12: 《余弦定理》教学反思

1、创设数学情境是“情境。应用”教学的基础环

本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

创设数学情境是“情境。应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第一章1。3正弦、余弦定理应用的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

“情境。应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

2、培养学生自主学习、合作学习、研究(探究)性学习的学习方式

(1)新教材与一期教材相比,有一个很大的变化就是在课本中增加了若干“探究与实践”的研究性课题,这些课题往往有着一定的实际生活情景,如出租车计价问题,测量建筑高度,邮资问题,“雪花曲线”等等,这些课题除了增强学生的数学应用能力之外,还有一个重要作用就是改变学生以往的学习方式。

在教学实践中,我对不同内容采取了不同的处理方式,像用单位圆中有向线段表示三角比;组合贷款中的数学问题主要在课堂引导学生完成;像邮件与邮费问题、上海出租车计价问题、声音传播问题、测建筑物的高度则采取课内介绍、布置、检查,学生主要在课外完成的方法。学生通过调查、上网收集数据,集体研究讨论,实践动手操作,无形之中使自己学习的主动性得以大大提高,自学能力也有所长足发展,从而有效的培养学生自主获取知识的能力,以适应未来社会发展的需要。

由此可见,新课程突出了“以学生发展为本”的素质教育理念与目标,强调素质的动态性和发展性,揭示了素质教育的本质,把学生素质的发展作为适应新世纪需要的培养目标和根本所在。因此,在教学实践中必须确立学生的主体地位。

(2)从培养学生的学习兴趣着手,变被动接受性学习为主动学习、自主学习、合作学习、研究(探究)性学习。根本改变重教法而轻学法的状况,使学生真正做到不但“知其然”,而且“知其所以然”,教师不仅要授之于“鱼”,更应该授之于“渔”,把本来应该让学生分析、总结、归纳、解决的问题由学生自己来解决。对学习有困难的学生,教师要多给予及时的关照与帮助,鼓励他们主动参与数学学习活动,尝试用自己的方式解题,敢于发表自己的看法,对出现的问题要帮助他们分析产生的原因,并鼓励他们自己去改正,从而增强学习数学的信心和兴趣。对于学有余力并对数学有兴趣的学生,教师可以为他们提供一些有价值的材料,指导他们阅读,发展他们的数学才能。

篇13: 《余弦定理》教学反思

1.本节课的教学过程大体上可以分为四个阶段,一是复习旧知识(余弦定理的内容是什么?定理有什么特点?),二是推导余弦定理的推论,三是余弦定理及其推论的简单运用和应用,四是总结归纳解斜三角形的一般思路、一般方法。

2.学生课堂表现非常积极,思维比较活跃,兴趣比较高,形成了一个比较好的上课氛围。就是本人给予学生的鼓励和肯定不足,今后的教学中多给学生鼓励和支持。

3.教学目标明确,能有效的对学生具有启发性、思考性、发展性的培养;多媒体的使用比较得当,既形象直观又提高了效率;板书设计比较规范,但自己的字体不好,今后多多训练。

4.我对本节课的课堂认知从教学效果看,应该说达到了预期的教学目标。学生在已有知识的基础上,自主得出了余弦定理的推论与应用;能较好地运用新知识分析问题和解决问题;通过练习的训练加强对知识的理解。

5.仍感到困惑的地方:

(1)自主学习时间与课堂容量;

(2)在课堂教学中如何关注学生的差异。

篇14:《余弦定理》教学反思

《余弦定理》教学反思

本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。

教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。

数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。

教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。

篇15:《余弦定理》教学反思

1、余弦定理是解三角形的重要依据,要给予足够重视。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。

2、本节课的重点首先是定理的证明,其次才是定理的应用。我们传统的.定理概念教学往往采取的是“掐头去尾烧中断”的方法,忽视了定理、概念的形成过程,只是一味的教给学生定理概念的结论或公式,让学生通过大量的题目去套用这些结论或形式,大搞题海战术,加重了学生的负担,效果很差。学生根本没有掌握住这些定理、概念的形成过程,不能明白知识的来龙去脉,怎么会灵活的应用呢?事实上已经证明,这种生搬硬套、死记硬背式的教学方法和学习方法已经不能适应新课标教育的教学理念。新课标课程倡导:强调过程,重视学生探索新知识的经历和获得的新知的体会,不能再让教学脱离学生的内心感受,把“发现、探究知识”的权利还给学生。

篇16: 教学设计

教学目标:

(1)情感:通过对常见生活用品的欣赏评述活动,提高学生的审美能力,增强对生活的热爱之情。

(2)知识:学会从不同的审美角度欣赏、分析、评述生活用品的设计,掌握实用和美观有机结合的设计原则。

(3)能力:能自觉地以艺术的眼光观察和分析常见的生活用品,并用恰当的语言进行评述。

教具准备:

多媒体课件,生活用品实物数件。

课堂教学:

一、游戏导入

课件展示几组质地不同(不锈钢、塑料、再生纸、陶瓷),造型不一的餐具。游戏规则:同学都是采购员,根据特定的对象,选择合适的餐具并说出理由。二、欣赏评述

(课件展示几组生活用品,引导学生欣赏,师生共同分析)

1、果盘:枝条交缠,鸡冠花纹,构图大方简洁,红、蓝、白三色搭配古朴典雅,放置水果时,与水果的鲜艳色彩形成鲜明的对比。枝、叶、花、果实在内容上形成一种统一的美感,是平面和立体的结合。

2、坐椅:

A、木椅:金字塔的造型给人稳固、安全的感觉,使人可以放心的坐下休息,原始的木纹和色彩缤纷的椅垫形成对比,似乎暗示了现代人与大自然的融合。

B、折椅:铝合金的椅架,造型简洁大方,可以折叠打包,携带方便。帆布面料比较耐磨,深蓝的色彩又较耐脏,真不失为现代人旅游的好伙伴。

C、椅子一组:单纯的颜色,简洁的造型,给人舒适的感觉,看到了就忍不住想坐一坐。同时,不用时要尽可能节省空间的问题设计者也为你想到了,看,几把椅子叠在一起形成的新的立体构成造型,像一座抽象的现代雕塑,不也觉得很美吗?

三、合作交流

(一)想一想、谈一谈

1、购买某种生活用品时你应如何进行选择?

2、生活用品的设计应该遵循什么原则?

3、通常可以从哪些方面欣赏、分析、评述一件生活用品?

(课件逐一展示问题,分别请同学发言)

(二)看一看、比一比

手机:(分组训练,相互讲解)

A款:外形方正规整,蓝色的屏幕和银色的机壳形成色彩的差异,喜欢它的人应该是工作严谨,一丝不苟的人。

B款:精致小巧的外形,机盖上镶嵌着璀璨的宝石,更显得高雅尊贵,是很多女士的掌中爱物。

C款:流线外形和金属质感,传达出独特的信息,机盖合起后呈简洁的弧形造型,活泼的式样加上多种富有青春气息的色彩,深受年轻人的喜爱。拿在手中,置于衣袋,都会使人感到很舒适。(录音讲解,学生对照。)

(三)写一写、讲一讲

1、请学生拿出自己带来的各种生活用品,根据自己的感受在纸上用几句话写出这件生活用品的设计好在哪里?你对于这件生活用品的设计还有什么更好的建议吗?

2、小组交流。

3、请勇于展示的同学上讲台展示自己带来的生活用品,并谈谈自己的欣赏感受。

(四)试一试、摆一摆

四、课外拓展

课件展示几组日常生活用品,在学生浏览欣赏的过程中提出要求:

1、做个有心人。在平常能针对各种常见生活用品的设计,分析其优缺点,提出改进的建议。

2、人小点子多。在父母、亲友购买生活用品时,能运用所学知识,为他们提供参考意见。

相关专题 余弦定理